

Overview

- Who is Nutech?
- Background information on Ozone
- What are the challenges/advantages?
- Testing Protocol/Floating Laboratory
- Test Results
- Focus of future testing

The Nutech Team:

- NORA
- Nutech-03

Chemists

Marine Engineers

Naval Architects

Academic Researchers

Corrosion Engineers

Environmental Scientists

Ship Owners & Operators

INTERNATIONAL

Background information...

- What is ozone?
- How is it made?
- How does it work?
 - Biologically
 - Chemically
- Other proven applications

This is Ozone $(O_3)...$

- Ozone is a powerful oxidation agent
- Easily soluble in water
- Colorless gas, with distinctive odor
- Extremely short half-life; after which
 O₃ reverts to O₂

This is how you "make" Ozone...

- Nitrogen is stripped from ambient air to concentrate the oxygen content
- Oxygen is passed through a high voltage or high frequency electrical field
- A percentage of the O₂ molecules are converted to O₃ molecules
- O₃ is then injected into the water stream utilizing diffusers or venturi technology

This is how it works — Biologically <u>and</u> Chemically...

- O3 reacts with other constituents normally found in sea water
- The reaction creates Hypobromous acid (HOBr) and Hypobromite ion (OBR-)
- These oxidants are the "killing" mechanism when their levels exceed a toxic threshold

Other water treatment uses for O_{3...}

- Municipal drinking water systems
- Bottled water suppliers
- Soda bottlers
- Breweries and Distilleries
- Commercial laundry facilities
- Sewage treatment plants
- Any place sterile water is needed

Technical *challenges* related to O₃

- Ozone is toxic to humans as well; how can we safely handle it on board ship?
- Ozone has a very short half-life in sea water (3-4 seconds); so how do we get it to do its job in such a short time?
- How do we make sufficient amounts of ozone to treat so much water?
- Latent toxicity, if any, needs to be neutralized

Technical <u>advantages</u> related to O₃

- Ozone is not sensitive to solids content in the water; therefore, no "pre-treatment" required
- Ozone has been proven NOT to accelerate corrosive forces already at work in sea water, at the dosage levels needed
- Ozone appears to be so effective at "killing" that it prevents re-growth

Issues that all ANS technologies must show they can deal with...

- What is the efficacy of the treatment especially compared to BWE?
- What are the dosage rates required to achieve this?
- What are the re-growth rates, if any?
- What are the economics involved?
 - Capital purchase costs
 - Installation costs
 - Operating and maintenance costs vs. cost of BWE

Development of the testing protocol

- All members of the Team were involved:
 - Academics
 - Scientists
 - Ship designers
 - Ship operators
- Real world or laboratory testing?
- What exactly would we test for?
- Against what performance standard(s)?
- Peer reviewed and approved

Engineering and Technical

- Ozone had never been used on board ships in the treatment of ballast water
- Regulatory (USCG, ABS) review was intense
- Owner/Operator scrutiny was also intense; focus on personnel and operational safety
- Space on the subject vessel was at a premium
- How should the ozone be distributed?
- Who would operate the equipment and perform the testing?

Our floating "Laboratory"

- T/V Tonsina, a 125,000 dwt tanker
- Owned by BP Oil Co.; operated by Alaska Tanker Co.
- 869' LOA x 136' beam
- Cargo capacity of 824,000 bbls (~ 34.6 million gallons)
- Ballast capacity of 306,500 bbls (~ 12.9 million gallons)

Equipment Installation

Test Results

Test results

Focus of next stage of testing

Scientific:

- How much of the killing is being done by the ozone vs. the oxidants produced by the ozone?
- Will latent toxicity be an issue?
- How can we best measure, in real time, the ability of the water to support life, and therefore the efficiency of our dosage rate?

Focus of next stage of testing (cont'd)

- **Engineering:** Our testing to date has proven that ozone works. Our focus is now turning towards what can be done to:
 - Reduce the installation costs
 - Maximize the production rate of ozone for the power consumed
 - Optimize the distribution method of the ozone
 - Determine the optimal quantity of ozone needed to achieve the desired "kill" rate

Thank you!

For more information....

N	D' 1 . 1 A M . II . (440) 225 0404
Northeast Technical Services Co., Inc.	Richard A. Mueller; (440) 236-9191
Nutech O ₃ , Inc.	Jack Robinson: (703) 821-1446
	Joel Mandelman; (703) 288-4694
	Michael Jennings; (703) 288-4011
LaQue Center	Dr. Bopinder S. Phull; (910) 256-2271
Parametrix	Dr. Robert Genesemer; (253) 863-5128
	Dr. William Stubblefield; (541) 758-2103
Shannon Point Marine Center	Dr. Paul Dinnel; (360) 293-2188
Smithsonian Environmental Research Council	Dr. Greg Ruiz; (301) 261-4190, x 227
University of North Carolina, Wilmington	Dr. William Cooper; (910) 962-2387
University of Washington	Dr. Jeffrey Cordell; (206) 543-7532
	Dr. Russ Herwig; (206) 685-2163
US Fish & Wildlife Service	Gary Sonnevil; (907) 262-9863

